
Progress Report  
 
Ravi Ramaseshan (rramase@ncsu.edu) 
Muhammad Latif (mmlatif@ncsu.edu)  

Solved Issues:  

Ravi: 
1. Merged the following files from Swift with the current release (openimpact-1.0rc4): 

a.  ./Lcode/Lcode/l_lcode.c 
b.  ./Lcode/Lcode/l_pred_flow.c 
c.  ./Lcode/Lcode/r_dataflow.c 
d.  ./Lcode/codegen/Ltahoe/phase2_func.c 
e.  ./Lcode/ codegen/Ltahoe/phase2_memstk.c 
f.  ./Lcode/codegen/Regalloc/r_regalloc.c 
g. ./Lcode/codegen/Regalloc/r_regspill.c 
h. ./Lcode/opti/Lopti/l_disjvreg.c 
i. ./Lcode/sched/SM/sm.c 

2. Read a document on Lcode and dumped the Lcode representation of a sample switch 
case program with the objective of becoming familiar with the internal representation 
of OpenImpact. 

Muhammad: 
3. Conducted further timing analysis and space analysis on two other possible methods 

to reduce instruction duplication for soft error detection in C. 
a. For pointer scheme 

i. Wrote a small routine which traversed an array of structure using 
pointer traversal 

ii. Repeated the routine a  (where  is a large number) to amortize 
any extra overheads. 

N N

iii. Implemented hardware abstraction for the modulo 3 operation by 
repeating the modulo 3 operation  times, and subtracting the cost of 
modulo 3 operation from the actual cost of the routine 

N

b. MSB/LSB duplication 
i. Wrote a small routine which involved addition of integers whose result 

was always bounded by the half of the bits in an integer 
ii. Incorporated the MSB half duplication of the LSB half of the integer 

values 
iii. Calculated the times taken by normal operation, EDDI operation, our 

scheme 
From the results of the experiments, we can conclude that implementing these 
schemes in the compiler would produce substantial savings in terms of both 
execution time and duplicated instruction overhead. 

mailto:rramase@ncsu.edu
mailto:mmlatif@ncsu.edu
http://ece-www.colorado.edu/%7Edconnors/courses/CGO/assignments/Lcode.pdf
http://www4.ncsu.edu/%7Erramase/Experimental%20Resutls.pdf


Open Issues: 
 
1. Get complete SWIFT code. 
2. Get the Fault tolerant SWIFT version of OpenImpact to build. 

Next Step: 
 
1. Understand the OpenImpact code base and the SWIFT fault tolerance modules. 
 
2. Understand the (duplicate) instruction generation for switch cases, for loops and 

pointer traversal. 
 
3. Search for more constructs to reduce instruction duplication for soft error detection. 


	Progress Report  
	Solved Issues:  
	Ravi: 
	Muhammad: 
	 Open Issues: 
	Next Step: 


